
Review for Final Exam December 6, 2017

ME 501A Seminar in Engineering 
Analysis Page 1

Review for Final Exam

Larry Caretto

Mechanical Engineering 501A

Seminar in Engineering Analysis

December 6, 2017

2

Review for Final
• Monday, December 11, 8-10 pm

• Open book and notes, similar to two 
midterm exams

• Will be cumulative, but will have greater 
weight on material since second midterm
– Matrix and eigenvalue problems (including 

simultaneous linear equations)

– Ordinary differential equations including 
Laplace Transforms

– Numerical solutions of ODEs
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Review Matrix Basics

• Array of 
numbers with 
n rows and m 
columns

• Components 
are a(row)(column)
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• Size of matrix (n x m) is number of rows 
and columns

• Square matrix: m = n
4

Review Multiplying Matrices
• For matrix multiplication, C = AB

– A has n rows and p columns
– B has p rows and m columns
– C has n rows and m columns ),1;,1(
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• For C = AB, we get cij by adding prod-
ucts of terms in row i of A (left matrix) by 
terms in column j of B (right matrix)

• cij = ai1b1j + ai2b2j + ai3b3j + ai4b4j + …
• In general, AB ≠ BA
• “Premultiply” by matrix on left and “post-

multiply” by matrix on right
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Review General Determinants

• Any size determinant can be evaluated 
by any of the following equations

• Can pick any row or any column
• Choose row or column with several zeros
• Can apply equation recursively; evaluate a 5 

x 5 determinant as a sum of 4 x 4 deter-
minants then get 4 x 4’s in terms of 3 x 3’s 
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Review Inverse of a Matrix

• For square matrix, A, the inverse, A-1, if it 
exists, gives AA-1 = A-1A = I

• Find the components of B = A-1, bij, from 
determinant of A and its cofactors
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• Use this formula to get algebraic 
equations for components of inverse 
matrix not for numerical analysis
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Review Norms

• Norm of vector x expressed as ||x|| 
generalizes notion of vector length

• q norm is one possible norm definition
– usual vector length is the “two norm”, ||x||2
– one norm is sum of absolute values 

– infinity norm is the element with maximum 
absolute value

  qq

iq
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xq norm 
definition:
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Review Inner Products
• General expression is (x, y)
• For two conventional vectors, [x1 x2 x3

… xn] and [y1 y2 y3 … yn], the inner 
product is xiyi

• For two column vectors, x and y, we 
can express the inner product as xTy

• For two row vectors, x and y, we can 
express the inner product as xyT

• We can also define inner products as 
integrals of two functions
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Review Linear (In)dependence

• A set of vectors linearly dependent if 
the following equation holds, where at 
least one of the i is not equal to zero.

• A linearly independent set of vectors is 
one that is not linearly dependent.

• Cannot have x(i) = 0 in LI set
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General Gauss Elimination

• Use each row from row 1 to row n-1 as 
the “pivot” row
– Work on each row below the pivot row

• Multiply pivot row by arow,pivot/apivot,pivot

• Subtract result from row r (r = pivot+1 to n) 
to create modified rows where arow,pivot = 0

• Operation requires subtraction for each 
column of A right of pivot column and for b

– Repeat for each row below pivot
• Repeat for rows 1 to n-1 as pivot rows
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Rank and Linear Equations
• Gauss elimination for solving equations 

and determining rank (number of 
linearly independent rows or columns)

• Solution of Ax = b
– No solutions unless rank A = rank [A b]
– Unique if rank A = rank [A b] = number of 

unknowns (infinite if rank < unknowns)
– Homogenous equations, Ax = 0: only 

solution is x = 0 unless Det A = 0 (same as 
saying Rank A < n)

– Find rank with Gaussian elimination
Rank = number of nonzero rows 12

Eigenvalues/Eigenvectors

• Basic definition (A n x n): Ax = x

• Det [A – I] = 0 gives nth order equation 
for eigenvalues
– n eigenvalues (may not be distinct)
– solve [A – I]x = 0 for n components of 

each of n eigenvectors 
– eigenvectors undetermined to within a 

multiplicative constant
– eigenvectors may or may not be linearly 

independent
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Condition of a Matrix
• In solution of Ax = b, ||r|| = ||b – Ax || is 

numerical residual we can calculate
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• Condition number (A) ||A|| ||A-1||

• Small is < 10; large is about 100 or more

• Expect large condition numbers to create 
problems in numerical solutions

• Use pivoting to reduce numerical error 
14

ODE Classifications

• Third-order, linear, 
homogenous

0)sin(
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• Third-order, non-linear, 
non-homogenous
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Separable ODE Forms

• Simple differential equations can be 
written as integrals
– Even if numerical quadrature is required 

this is more accurate than numerical 
solution of ODE
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First-order ODEs

• First order rate equation where rate is 
proportional to amount dy/dt = -ky

• y = y0e-k(t-t
0
)

• General linear first order equation for 
y(x): dy/dx + f(x)y = g(x) has closed form 
solution shown below

• C is found from initial condition

    dxxgeCeydxxfp pp )()(
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Review y’’ + αy’ + βy = 0

• Three cases depending on 2 = β – α2/4

• Double root when β = α2/4:  

– y = (C1 + C2x) eαx/2

• Complex roots when β > α2/4, 2 > 0

– y = e–αx/2 [Acos x +Bsin x]

• Distinct real roots when β < α2/4

– y = C1e
1
x + C2e

2
x
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Review y’’ + αy’ + βy = 0 II
• Initial conditions y(0) = y0 and y’(0) = v0

• Double root when β = α2/4:  
– y = [(v0 + y0α/2)x + y0] eαx/2

• Complex roots when β > α2/4
– y = e–αx/2 [y0cos x +1(v0 + y0α/2)sin x]

• Distinct real roots when β < α2/4
– y = C1e

1
x + C2e

2
x

– C1 = (2y0 – v0)/(2 – )
– C2 = (v0 – y0)/(2 – )
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Review Nonhomogeneous ODEs

• Homogenous: f(dny/dxn,…y) = 0

• Nonhomogeneous: f(dny/dxn,…y) = r(x)

• First solve homogenous part: yH

– Do not find constants in this solution

• Find particular solution, yP, using the
method of undetermined coefficients

• Combine parts to get y = yH + yP

• Apply initial/boundary conditions to y to 
find undetermined constants

19 20

Review Undetermined Coefficients
• Used for constant coefficient equation 

y’’ + ay’ + by = r(x) (or higher order)
• Solution is y = yP + yH, where yH is 

solution of yH’’ + ayH’ + by = 0
• Postulate a solution for yP following 

guidelines on next two charts
• Plug solution into ODE and solve for 

unknown coefficients
– Overall coefficients of like terms on both 

sides of ODE must vanish

21

Table of Trial yP Solutions

For these r(x) Start with this yP

r(x) = Aeax yP = Beax

r(x) = Axn yP = a0 + a1x + … + anxn

r(x) = Asin t
yP = B sin t + C cos t

r(x) = Acos t

r(x) = Aeaxsin t yP = eax (B sin t  + C 
cos t)r(x) = Aeaxcos t

22

Special Rules
• If the right-hand-side, r(x) consists of 

more than one term from the previous 
table, use a yP that contains all the 
corresponding yP terms
– For r(x) = Acos bx + Cedx, use yP = E sin bx 

+ F cos bx + Gedx

• If r(x) is proportional to a solution for the 
homogenous equation, use yP equal to 
x times the yP shown in the table
– For a double root, multiply table yP by x2

23

Review Higher Order ODEs
• nth order ODE with constant coefficients
• Solution is y = yH + yP
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• Homogenous solution

• k are solutions to the equation n + 
an-1 n-1 + an-2 n-2 + ··· + a1  + a0 = 0

• Multiple and complex roots
24

Review Higher Order ODEs II

• yP may be found by undetermined 
coefficients or variation of parameters
– Use same process for method of 

undetermined coefficients

– May have eax, sin ax, or cosine ax in r(x) 
where a root of homogenous solution

• Must handle possibility of multiple roots in 
higher order equations

– Variation of parameters is more complex 
and will not be on final exam
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Matrix Differential Equations 

• Matrix components in rAy
y


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Solving

• Possible conversion when A(n x n) has n 
linearly independent eigenvectors which 
are the columns of matrix, X

• Define a new vector s = X-1y (y = Xs)

rAy
y
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dt

d

rXAXsX
Xs

XrAXs
Xs 111  

dt
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s

pAXsX
s
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dt
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Matrix Solution Terms

• With these definitions, si = Cie
i
t + qi

becomes s = E(t)C + q (at t = 0, E(0) = I)
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Solution for vector y

• y = Xs = XEC + Xq
• Setting y = y0 at t = 0 we gives C = 

X-1y0 – q0 so that we find the 
solution to the matrix system as

• Result: y = XE [X-1y0 – q0] + Xq
• For homogenous systems (q = 0), 

the solution is y = XEX-1y0
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Laplace Transform Definition


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)()()]([ sFdttfetf st

• Transforms from a function of time, f(t), to 
a function in a complex space, F(s), 
where s is a complex variable

• The transform of a function, is written as 
F(s) = L f(t) where L denotes the Laplace 
transform (use    for L in some equations)

• Laplace transform defined as the 
following integral



L
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Simple Laplace Transforms
f(t) F(s) f(t) F(s)

tn n!/sn+1 eatsint

tx (x+1)/sx+1

eat 1/(s – a) eatcost

sint /(s2 + 2)

cost s/(s2 + 2) Additional transforms 
in  pp 264-267/248-251 
of Kreyszig 9th/10th

edition

sinht /(s2 - 2)

cosht s/(s2 - 2)

22)( 

 as

22)(

)(
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Review Transforms Properties
• L [af1(t) + bf2(t)] = aL [f1(t)] + bL [f2(t)] 

• First shifting theorem
• If L[f(t)] = F(s) then L[eatf(t)] = F(s – a) 

– Example: L[cos(t)] = s/(s2 + 2) so 
L[eatcos(t)] = (s – a)/[(s – a)2 + 2]

• Derivative transforms where L[f(t)] = F(s)
– L[df/dt] = sF(s) – f(0)

– L[d2f/dt2] = s2F(s) – sf(0) – f’(0)

– Similar results for higher derivatives
32

Solving Differential Equations
• Transform all terms in the differential 

equation to get an algebraic equation
– For a differential equation in y(t) we get the 

transforms Y(s) = L [y(t)]
– Similar notation for other transformed 

functions in the equation R(s) = L [r(t)]
• Solve the algebraic equation for Y(s)
• Obtain the inverse transform for Y(s) 

from tables to get y(t)
– Use method of partial fractions to get from 

Y(s) equation to transforms in tables

33

Review Partial Fractions
• Method to convert fraction with several 

factors in denominator into sum of 
individual factors (in denominator)

• Example is F(s) = 1/(s+a)(s+b)
• Write 1/(s+a)(s+b) = A/(s+a) + B/(s+b)
• Multiply by (s+a)(s+b) and equate 

coefficients of like powers of s
– 1 = A(s + b) + B(s + a)
– A + B = 0 for s1 terms and 1 = bA + aB for 

s0 terms

34

Review Partial Fractions II
– A + B = 0 for s1 terms and 1 = bA + aB for 

s0 terms
– Solving for A and B gives A = -B = 1/(b – a)

• Result: 1/(s+a)(s+b) =                        
1/[(b – a)(s + a)] – 1/[(b – a)(s + b)]
– So f(t) = [e-at – e-bt]/(b – a)

• This actually matches a table entry
• Follow same basic process for more 

complex fractions
• Special rules for repeated factors and 

complex factors
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Review Partial Fraction Rules
• Repeated fractions for repeated factors 
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Truncation Error

• If we truncate series after m terms
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• Derive finite-differences for derivatives
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First Derivative Expressions
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Figure 2-1. Effect of Step Size on Error
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Simple Numerical ODE 
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• Huen’s method

• Modified Euler method
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• Euler: yi+1 = yi + hifi = yi + hi f(ti, yi)
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Fourth-Order Runge-Kutta

• Uses four derivative evaluations per step
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Error versus Step Size for Simple ODE Solvers
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Adams-Bashforth-Moulton

• Predictor corrector method

• Predictor equation uses four points
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• Corrector equation uses four points 
including point n+1 with predicted yP
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Adams-Bashforth-Moulton II
• Use difference between predictor and 

corrector to estimate solution error, EC

• If error estimate, EC, is in allowed range 
do not change step size

• Double step size if EC is too large

• Half step size if EC is small enough
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Explicit vs. Implicit Methods
• Explicit algorithms use information from 

previous steps to get values at new time 
step, tn+1

– Algorithms may compute trial values at 
new time step to get their result

• Implicit algorithms use values at new 
time step in their basic equation

• Require iterations for each time step or 
series expansion of derivatives for 
simple methods

Numerical ODE Solutions

• Algorithms for initial-value problem 
(IVP) with single first order equation 

• Apply to system of first-order equations

• Convert higher order IVP equations to
system of first order equations

• Convert system of higher order IVP
ODEs to system of first order equations
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Boundary-value problems
• Shoot-and-try is usually best approach 

for non-linear problems
– Adapts methods used for initial-value

problems

• Finite-difference approach usually best 
for linear problems
– Application to ODEs is instructive of basic 

use of these methods for PDEs

• Finite-elements important for 
engineering design software not on final

Eigenvalue Problems

• Finite difference equations for 
eigenvalue problems must be solved for 
matrix eigenvalues

• ODE eigenvalues are parameters that
must be fitted because there are not
enough arbitrary constants in the ODE 
solution to fit all the boundary conditions
– May be unknown parameters in the

problem formulation
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Final Exam Dec 11, 8-10 pm
• Open book and notes, including 

homework solutions
– Comprehensive but more problems on

numerical analysis not covered on midterms

• Make your own notes to use for exam
– You are in trouble if you have to use the 

book on an open-book exam

• More credit given for showing how to 
obtain solution than for providing final 
details of algebra or arithmetic


