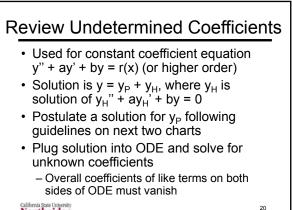


Review Nonhomogeneous ODEs

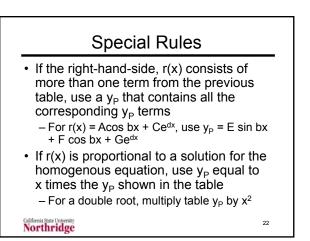
- Homogenous: f(dⁿy/dxⁿ,...y) = 0
- Nonhomogeneous: $f(d^ny/dx^n,...y) = r(x)$
- First solve homogenous part: y_H

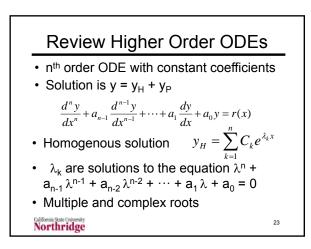
 Do not find constants in this solution
- Find particular solution, y_P, using the method of undetermined coefficients
- Combine parts to get y = y_H + y_P
- Apply initial/boundary conditions to y to find undetermined constants
 Northridge

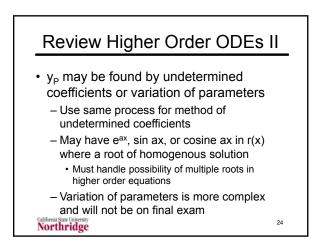


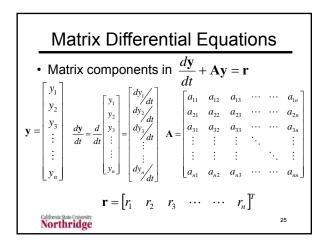
Northridge

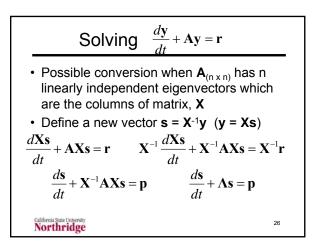
Table of T	rial y _P Solutions
For these r(x)	Start with this y _P
$r(x) = Ae^{ax}$	y _P = Be ^{ax}
$r(x) = Ax^n$	$y_{\rm P} = a_0 + a_1 x + \dots + a_n x^n$
r(x) = Asin ωt	y = P oin ot + C on ot
r(x) = Acos ωt	$y_{P} = B \sin \omega t + C \cos \omega t$
r(x) = Ae ^{ax} sin ωt	$y_P = e^{ax} (B \sin \omega t + C)$
r(x) = Ae ^{ax} cos ωt	cos ωt)
California State University Northridge	21

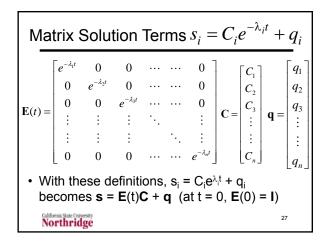


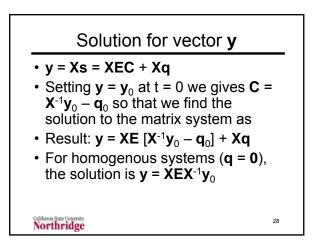


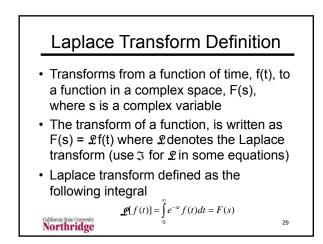




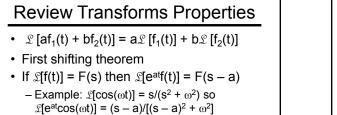








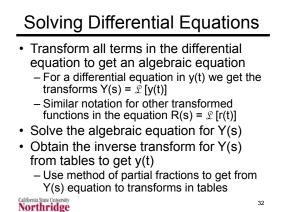
f(t)	F(s)	f(t)	F(s)
t ⁿ	n!/s ⁿ⁺¹	e ^{at} sin ωt	ω
t×	Γ(x+1)/s ^{x+1}	1	$\overline{(s-a)^2+\omega^2}$
e ^{at}	1/(s – a)	e ^{at} cos ωt	(s-a)
sin wt	$\omega/(s^2 + \omega^2)$	1	$\overline{(s-a)^2+\omega^2}$
cos ωt	$s/(s^2 + \omega^2)$	Additional transforms in pp 264-267/248-251 of Kreyszig 9 th /10 th edition	
sinh ωt	ω/(s ² - ω ²)		
cosh ωt	s/(s ² - ω ²)		

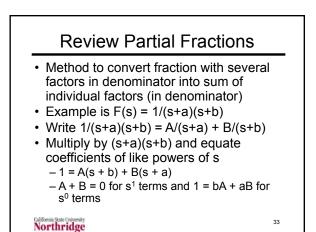


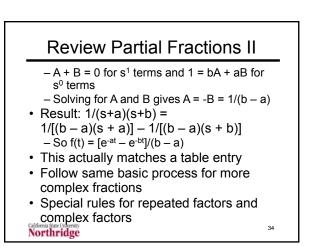
31

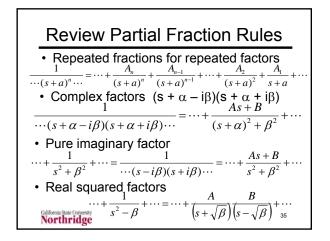
- Derivative transforms where $\mathfrak{L}[f(t)] = F(s)$ _ $\mathfrak{L}[df/dt] = sF(s) - f(0)$
 - $\mathcal{L}[d^2f/dt^2] = s^2F(s) sf(0) f'(0)$
 - Similar results for higher derivatives

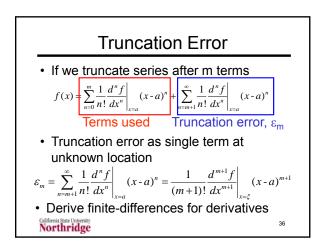
California State University Northridge

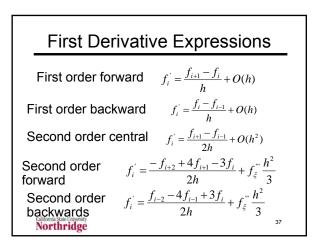


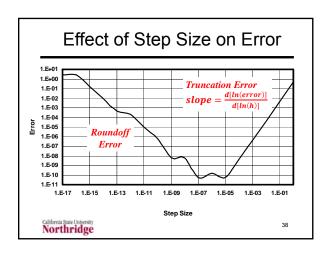


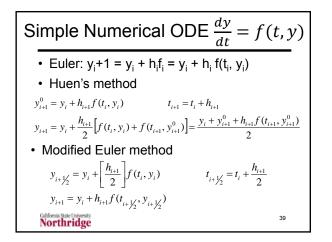


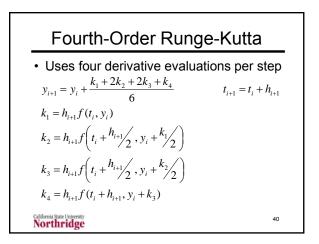


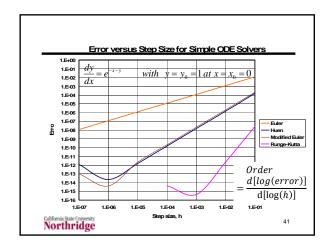


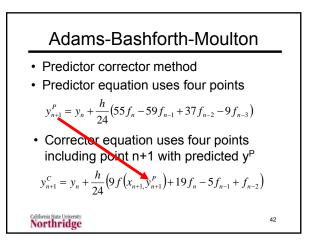


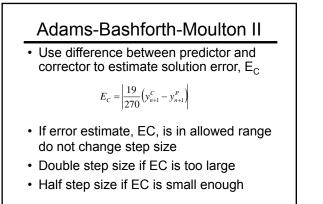




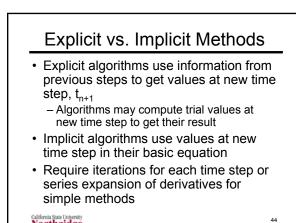




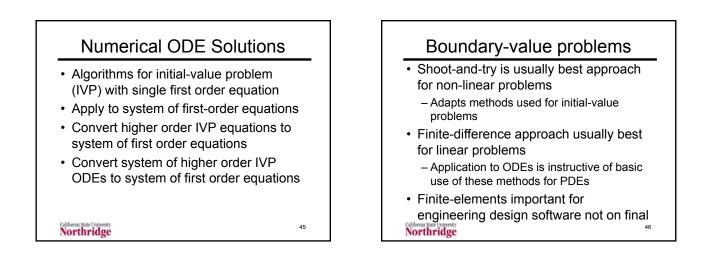




Northridge



Northridge



43

47

Eigenvalue Problems

- Finite difference equations for eigenvalue problems must be solved for matrix eigenvalues
- · ODE eigenvalues are parameters that must be fitted because there are not enough arbitrary constants in the ODE solution to fit all the boundary conditions - May be unknown parameters in the problem formulation

Northridge

Final Exam Dec 11, 8-10 pm · Open book and notes, including homework solutions - Comprehensive but more problems on numerical analysis not covered on midterms Make your own notes to use for exam - You are in trouble if you have to use the book on an open-book exam More credit given for showing how to obtain solution than for providing final details of algebra or arithmetic Northridge 48